微分積分学 II(CA4)(Differential and Integral Calculus II)							
本科	選択・必修	開設時期	単位数	授業形態	担当		
一般科目	必修	4 年後	1	講義	橋本堅一		

【授業の概要】

無限数列や無限級数の収束・発散の概念、初等関数のマクローリン展開やテイラー展開を学習する。

【授業の進め方】 講義形式で授業を進めるが、「演習」、「レポート」を次のように行う。「演習」; 教科書の問題を割り当て、板書による添削を行う。 「レポート」(宿題):問題集(教科傍用)の問題を解答して提出する。授業内容を理解するために予習復習が必須である。

「レポート」(宿題	[) : 問題集(教科傍用)の問題を解答 ┏	「して提出する。授業内容を理解するために予習復習が必須である。 T				
【授業の概要】	【授業項目】	【内容】				
1 🛭	多項式による近似による近似 (1)	基本的な関数の1次、2次近似式を理解する。				
2 回	多項式による近似による近似 (2)	n 次近似式を求める。 1 変数関数の極値を調べる。				
3 🗖	数列の極限	無限数列の極限を求める。				
4 🛭	級数	級数の収束・発散を調べ、和を求める。				
5 🛽	演習	1回から4回の授業の演習を行う。				
6 🛭	等比級数	等比級数の収束・発散について学び、具体的な問題を解く。				
7 🛭	演習	等比級数の演習を行う。				
8 🛽	中間試験	1回から8回の範囲で中間試験を行う。				
9 回	答案返却。べき級数	べき級数を学び、その収束条件を求める。				
10 回	マクローリン展開	指数関数、三角関数等の基本的な関数のマクローリン展開・テイラー 展開を求める。				
11 回	マクローリンの定理とテイ ラーの定理	テイラーの定理を学び、基本的な関数についてこれを適用する。				
12 🛛	演習	9回から11回の授業の演習を行う。				
13 🔲	オイラーの公式	オイラーの公式を証明し、複素数の計算に応用する。				
14 🛭	演習	オイラーの公式の演習を行う。				
	期末試験	9回から14回の範囲で中間試験を行う。				
15 🔲	解答返却など	試験答案を返却し、解答および配点について説明する。				
【到達目標】 無限数列や無限級数の収束・発散の概念が理解できる。初等関数のマクローリン展開やテイラー原具体的に求めることができる。						
【徳山高専学習・教育目標】 A 1		【 J A B E E基準 】 1(2)c-1				
【評価法】	最終評価は、中間試験 (100 得点で評価する。	最終評価は、中間試験 (100) × 0.45+ 期末試験 (100) × 0.45+ 演習問題の評価 (100) × 0.1 で算出された 得点で評価する。				
【テキスト】	教科書:斉藤純一他「新微問題集:阿部弘樹他「新微	双科書:斉藤純一他「新微分積分 II」(大日本図書)と自主教材 題集:阿部弘樹他「新微分積分 II 問題集」(大日本図書)				
【関連科目】	微分積分学 I	微分積分学I				
【成績欄】	前期中間試験 前期末試					